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Interpolation

Basic interpolation problem: for given data

(tiay’i)7 i:]-)"'am?

with t1 < to < ... < tm, determine function
f:R — R such that

f(tz):yw i:]-)"'am

f is interpolating function, or interpolant, for
given data

Additional data might be prescribed, such as
slope of interpolant at given points

Additional constraints might be imposed, such
as smoothness, monotonicity, or convexity of
interpolant

f could be function of more than one variable,
but we will consider only one-dimensional case
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Purposes for Interpolation
Plotting smooth curve through discrete data
points
Reading between lines of table
Differentiating or integrating tabular data

Quick and easy evaluation of mathematical
function

Replacing complicated function by simple
one



Interpolation vs Approximation

By definition, interpolating function fits given
data points exactly

Interpolation inappropriate if data points sub-
ject to significant errors

Usually preferable to smooth noisy data, for
example by least squares approximation

Approximation also appropriate for special func-
tion libraries



Issues in Interpolation

Arbitrarily many functions interpolate given data
points

e \What form should function have?

e How should function behave between data
points?

e Should function inherit properties of data,
such as monotonicity, convexity, or period-
icity?

e Are parameters that define interpolating
function meaningful?

e If function and data are plotted, should re-
sults be visually pleasing?



Choosing Interpolant
Choice of function for interpolation based on

e How easy function is to work with

— determining its parameters
— evaluating function
— differentiating or integrating function
e How well properties of function match prop-

erties of data to be fit (smoothness, mono-
tonicity, convexity, periodicity, etc.)



Functions for Interpolation

Families of functions commonly used for inter-
polation include

e Polynomials

e Piecewise polynomials

e Trigonometric functions

e EXxponential functions

e Rational functions

We will focus on interpolation by polynomials
and piecewise polynomials for now

Will consider trigonometric interpolation (DFT)
later



Basis Functions

Family of functions for interpolating given data
points is spanned by set of basis functions ¢1(t),

.+ Pn(t)

Interpolating function f chosen as linear com-
bination of basis functions,

O =3 26,00)

j=1

Requiring f to interpolate data (¢;,y;) means

f) = > zjoi(t) =y, i=1,...,m,

J=1
which is system of linear equations
Ax =y
for n-vector & of parameters T, where entries
of m x n matrix A are given by a;; = ¢;(;)
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EXxistence, Uniqueness, and Conditioning

Existence and uniqueness of interpolant de-
pend on number of data points m and number
of basis functions n

If m > n, interpolant usually doesn’t exist

If m < n, interpolant not unique

If m = n, then basis matrix A nonsingular,
provided data points ¢; distinct, so data can
be fit exactly

Sensitivity of parameters x to perturbations in

data depends on cond(A), which depends in
turn on choice of basis functions



Polynomial Interpolation

Simplest and most common type of interpola-
tion uses polynomials

Unique polynomial of degree at most n — 1
passes through n data points (¢;,y;), i =1,...,n,
where t; are distinct

There are many ways to represent or compute
polynomial, but in theory all must give same
result
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Monomial Basis

Monomial basis functions,
;) =t j=1,...n,
give interpolating polynomial of form
Prn-1(t) = z1 + ot + -+ 2pt" L,

with coefficients x given by n xn linear system

1ty e TN (2] [w]
1ty - 1| |z

Az = ° 2 1172 =1 =y
_1 tn tg_l_ _x'n,_ _yn_

Matrix of this form called Vandermonde matrix
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Example: Monomial Basis

Find polynomial of degree two interpolating
three data points (—-2,—-27), (0,—-1), (1,0)

Using monomial basis, linear system is

1ty t3] [21] [ Y1 |
Az = |1 5 t% o | = |y2| =y
|1 t3 t5] Laal | Y3

For these particular data, system is

(1 -2 4] [x1] [ —27
1 0 O |z|=]| -1/,
1 1 1] [z3] . 0]
whose solution is z = [-1 5 —4]%, so in-

terpolating polynomial is

po(t) = —1 + 5t — 4¢2
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Monomial Basis, continued

Solving system Ax = y using standard linear
equation solver to determine coefficients a of
interpolating polynomial requires O(n3) work

For monomial basis, matrix A often ill-conditioned,
especially for high-degree polynomials

1.0

1
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Monomial Basis, continued

Ill-conditioning does not prevent fitting data
points well, since residual for linear system so-
lution will be small

But it does mean that values of coefficients
may be poorly determined

Both conditioning of linear system and amount
of computational work required to solve it can
be improved by using different basis

Change of basis still gives same interpolating
polynomial for given data, but representation
of polynomial will be different
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Monomial Basis, continued

Conditioning with monomial basis can be im-
proved by shifting and scaling independent vari-

able t: |
o=

where, ¢ = (t1 + tn)/2 is midpoint and d =
(tn, — t1)/2 is half of range of data

New independent variable lies in interval [—1, 1],
which also helps avoid overflow or harmful un-
derflow

Even with optimal shifting and scaling, mono-

mial basis usually still poorly conditioned, and
we seek better alternatives
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Evaluating Polynomials

When represented in monomial basis, polyno-
mial
pp_1(t) =x1F+ 20t +--- 4+ wntn_l

can be evaluated efficiently using Horner’s nested
evaluation scheme:

Pp—1(t) = z1+t(zo+t(z3+t(- - - (Tp_1+tTn) ---))),

which requires only n additions and n multipli-
cations

For example,

1—4t4+5t2—2t34-3t% = 14+t(—44t(54+t(—2431)))

Other manipulations of interpolating polyno-
mial, such as differentiation or integration, are
also relatively easy with monomial basis repre-
sentation
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Lagrange Interpolation

For given set of data points (¢;,y;), i =1,...,n,
[Lagrange basis functions given by

n n

)= I G-t/ 1l & —te),

For Lagrange basis,

(1 ifi= L
Ej(tz)_{o Ifz#]a 7’7.]_17"'777/

sO matrix of linear system Ax = y is identity

Thus, Lagrange polynomial interpolating data
points (¢;,vy;) given by

Pr—1(t) = y1£1(t) + yolo(t) + - + ynln(t)
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Lagrange Basis Functions

LLagrange interpolant is easy to determine but
more expensive to evaluate for given argument,
compared with monomial basis representation

Lagrangian form is also more difficult to dif-
ferentiate, integrate, etc.

18



Example: Lagrange Interpolation

Use Lagrange interpolation to find interpolat-
ing polynomial for three data points (-2, —-27),

(0,-1), (1,0)

Lagrange polynomial of degree two interpolat-
ing three points (t1,y1), (t2,y2), (t3,y3) is

(t —t2)(t —t3) (t—t1)(t —t3)

(t1 —t2)(t1 — t3)+y2 (to —t1)(t2 — t3)

(t—t1)(t —t2)
(tz —t1)(t3 — t2)

p2(t) = y1

+y3

For these particular data, this becomes

L #t—1) (t+2)(t —1)
(-2)(-2-1) (2)(—1)

po(t) = =2 +(-1)
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Newton Interpolation

For given set of data points (¢;,y;), i =1,...,n,
Newton basis functions given by

71—1
ﬂ-j(t): H(t_tk‘)a ]:1,,7’2,,
k=1

where value of product taken to be 1 when
limits make it vacuous

Newton interpolating polynomial has form
Pn—1(t) = x1+xo(t—t1) +a3(t —t1)(t—t2) +- -

+aon(t —t1)(t —t2) - (t —tp—_1)

For ¢ < j, m;(¢;) = 0, so basis matrix A is lower
triangular, where a;; = m;(%;)
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Newton Interpolation, continued

Hence, solution x to system Ax = y can be
computed by forward-substitution in @(n?) arith-
metic operations

Moreover, resulting interpolant can be eval-
uated efficiently for any argument by nested
evaluation scheme similar to Horner's method

Newton interpolation has better balance be-
tween cost of computing interpolant and cost
of evaluating it

3.0 - A
7/
/" /
2.0 - g
i
___________ rad /
10— 7 s
7.(-]_ __________ - 7 /
________________ '—7'(' 2 —‘—¢”7T3 _ -~ /7.(-4 ~ 75
0.0 = o me ezt = — =0 7
| | | '




Example: Newton Interpolation

Use Newton interpolation to find interpolat-
ing polynomial for three data points (-2, —-27),

(0,—-1), (1,0)

Using Newton basis, linear system is

1 0 0 1 [x1] K
1 to—11 0 x| = | yo
|1 tz3—t; (t3—t1)(t3—t2)] Lx3] L Y3 |

For these particular data, system is

‘10 0][x1] [-27]
1 2 0 o | — —1 )
1 3 3] [z3] i 0

whose solution by forward substitution is x =
[—27 13 —4]T, SO interpolating polynomial
IS

p(t) = —27 + 13(t + 2) — 4(t + 2)t
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Newton Interpolation, continued

If p;(t) is polynomial of degree j—1 interpolat-
ing 7 given points, then for any constant T4

Pj+1() =p;(t) +xj41m41(2)

is polynomial of degree 5 that also interpolates
same j points

Free parameter z;,1 can then be chosen so
that p;41(¢) interpolates y;4 1. Specifically,

s Yj+1 — pi(tjr1)
’ mi+1(tj41)

Newton interpolation begins with constant poly-
nomial py(t) = y1 interpolating first data point

and then successively incorporates remaining

data points into interpolant
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Divided Differences

Given data points (¢;,vy;), 1 = 1,...,n, divided
differences, denoted by f[ ], defined recursively
by

f[t27t37'-'7tk] _f[t17t27"°7tk—1]
f[t17t27"'7tk]: 9
tr — t1

where recursion begins with f[ti] = vy, k =

1,...,n

Coefficient of jth basis function in Newton in-
terpolant given by

£Lq :f[t17t27"°7tj]

Recursion requires O(n?) arithmetic operations
to compute coefficients of Newton interpolant,
but is less prone to overflow or underflow than
direct formation of triangular Newton basis ma-
trix
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Orthogonal Polynomials

Inner product can be defined on space of poly-
nomials on interval [a, b] by taking

a) = [ pa(w(tydt

where w(t) is nonnegative weight function

Two polynomials p and ¢q are orthogonal if
(p,q) =0

Set of polynomials {p;} is orthonormal if
1 ife=y
(pis j) = { 0 otherwise

Given set of polynomials, Gram-Schmidt or-
thogonalization can be used to generate or-
thonormal set spanning same space
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Orthogonal Polynomials, continued

For example, with inner product given by weight
function w(t) = 1 on interval [—1,1], apply-
ing Gram-Schmidt process to set of monomials
1,¢,¢2,¢3,... yields Legendre polynomials

1, t, (3t2—1)/2, (5¢t3-3t)/2,

(35t*—30t2+3)/8, (63t°>—70t3+415t)/8, ...,

first n of which form an orthogonal basis for
space of polynomials of degree at most n — 1

Other choices of weight functions and inter-
vals vield other orthogonal polynomials, such
as Chebyshev, Jacobi, Laguerre, and Hermite
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Orthogonal Polynomials, continued

Orthogonal polynomials have many useful prop-
erties

They satisfy three-term recurrence relation of
form

Pr+1(t) = (agt + Br)pr(t) — viepr—1(1),

which makes them very efficient to generate
and evaluate

Orthogonality makes them very natural for least
squares approximation, and they are also useful
for generating Gaussian quadrature rules
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Chebyshev Polynomials
kth Chebyshev polynomial of first kind defined
on interval [—1,1] by
Ty.(t) = cos(karccos(t))
are orthogonal with respect to weight function
(1-— t2)_1/2
First few Chebyshev polynomials given by
1, ¢, 2t2—1, 43 -3¢, 8t* —8t2+1,
162 — 20t3 + 5t
Equi-oscillation property: successive extrema
of T} are equal in magnitude and alternate

in sign, which distributes error uniformly when
approximating arbitrary continuous function
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Chebyshev Points

Chebyshev points are zeros of 1}, given by

21— 1
t; = COS (2i ) , 1=1,...,k,
2k

or extrema of Ty, given by

1T

tz-:cos(—), 1=20,1,... k.
k

Chebyshev points are abscissas of points equally
spaced around unit circle in plane R?

—1 0 1

Chebyshev points have attractive properties for
interpolation and other problems
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Interpolating Continuous Functions

If data points are discrete sample of continu-
ous function, how well does interpolant approx-
imate that function between sample points?

If f is smooth function, and p,,_1 is polynomial
of degree at most n — 1 interpolating f at n
points t1,...,tn, then

(n) (g
F@O=par® ="y -12) - (-1,

where 6 is some (unknown) point in interval

[tla tn]

Since point 8 unknown, result not particularly
useful unless bound on appropriate derivative
of f is known
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Interpolating Continuous Functions, cont.

If [F(M)()] < M for all t € [t1,tn], and h =
max{t;y1 —t;: i =1,...,n— 1}, then

MA"

max |f(t) — pp—1(t)| <
tet1,tn]

Error diminishes with increasing n and decreas-
ing h, but only if |[f{")(¢)| does not grow too
rapidly with n
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High-Degree Polynomial Interpolation

Interpolating polynomials of high degree are
expensive to determine and evaluate

In some bases, coefficients of polynomial may
be poorly determined due to ill-conditioning of
linear system to be solved

High-degree polynomial necessarily has lots of

“wiggles,” which may bear no relation to data
to be fit

Polynomial goes through required data points,
but it may oscillate wildly between data points
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Nonconvergence

Polynomial interpolating continuous function
at equally spaced points may not converge to
function as number of data points and polyno-
mial degree increases

Example: Polynomial interpolants of Runge’s
function at equally spaced points

200N —jw=ya+sa |
(L ps(t)

1.5+ ................... plO(t)

1.0

0.5
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Placement of Interpolation Points

Equally spaced interpolation points often yield
unsatisfactory results near ends of interval

If points are bunched near ends of interval,
more satisfactory results likely to be obtained
with polynomial interpolation

For example, use of Chebyshev points distributes
error evenly and vields convergence throughout
interval for any sufficiently smooth function
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Placement of Points, continued

Example: Polynomial interpolants of Runge’s
function at Chebyshev points

2.0

1.5

1.0

0.5

f(t) = 1/(1 + 25t%)
ps(t)
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Taylor Polynomial

Another useful form of polynomial interpola-
tion for smooth function f is polynomial given
by truncated Taylor series

f"(a)

-2+

pn(t) = f(a) + f'(a)(t —a) +

(n)(q
LAO@

n!

Polynomial interpolates f in that values of pj,
and its first n derivatives match those of f and
its first n derivatives evaluated at ¢t = a, SO
pn(t) is good approximation to f(t) for ¢ near
a

We have already seen examples in Newton’s
method for nonlinear equations and optimiza-
tion
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Piecewise Polynomial Interpolation

Fitting single polynomial to large number of
data points is likely to vield unsatisfactory os-
cillating behavior in interpolant

Piecewise polynomials provide alternative to
practical and theoretical difficulties with high-
degree polynomial interpolation

Main advantage of piecewise polynomial inter-
polation is that large number of data points
can be fit with low-degree polynomials

In piecewise interpolation of given data points
(t;,y;), different function is used in each subin-
terval [tiatz’—|—1]

Abscissas t; are called knots or breakpoints, at
which interpolant changes from one function

to another
37



Piecewise Interpolation, continued

Simplest example is piecewise linear interpola-
tion, in which successive pairs of data points
are connected by straight lines

Although piecewise interpolation eliminates ex-
cessive oscillation and nonconvergence, it ap-
pears to sacrifice smoothness of interpolating
function

We have many degrees of freedom in choos-
ing piecewise polynomial interpolant, however,
which can be exploited to obtain smooth inter-
polating function despite its piecewise nature
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Hermite Interpolation

In Hermite interpolation, derivatives as well as
values of interpolating function are specified at
data points

Specifying derivative values adds more equa-
tions to linear system that determines param-
eters of interpolating function

To have unique solution, number of equations
must equal number of parameters to be deter-
mined

Piecewise cubic polynomials are typical choice
Hermite interpolation, providing flexibility, sim-
plicity and efficiency
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Hermite Cubic Interpolation

Hermite cubic interpolant is piecewise cubic
polynomial interpolant with continuous first deriva-
tive

Piecewise cubic polynomial with n knots has
4(n — 1) parameters to be determined

Requiring that it interpolate given data gives
2(n — 1) equations

Requiring that it have one continuous deriva-
tive gives n — 2 additional equations, or total
of 3n — 4, which still leaves n free parameters

Thus, Hermite cubic interpolant is not unique,
and remaining free parameters can be chosen
so that result satisfies additional constraints

40



Cubic Spline Interpolation

Spline is piecewise polynomial of degree k that
is kK — 1 times continuously differentiable

For example, linear spline is of degree 1 and has
O continuous derivatives, i.e., it is continuous,
but not smooth, and could be described as
“broken line”

Cubic spline is piecewise cubic polynomial that
IS twice continuously differentiable

As with Hermite cubic, interpolating given data
and requiring one continuous derivative imposes
3n — 4 constraints on cubic spline

Requiring continuous second derivative imposes
n — 2 additional constraints, leaving 2 remain-
ing free parameters
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Cubic Splines, continued

Final two parameters can be fixed in various
Ways:

e Specifying first derivative at endpoints t;
and ty

e Forcing second derivative to be zero at
endpoints, which gives natural spline

e Enforcing “not-a-knot” condition, forcing
two consecutive cubic pieces to be same

e Forcing first derivatives, as well as second
derivatives, to match at endpoints ¢; and
tn (if spline is to be periodic)
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Example: Cubic Spline Interpolation

Determine natural cubic spline interpolating three
data points (¢;,v;), 1 =1,2,3

Required interpolant is piecewise cubic func-
tion defined by separate cubic polynomials in
each of two intervals [t1,t>] and [to, t3]

Denote these two polynomials by
p1(t) = a1 + ant + azt® + agt’,
pa(t) = B1 + Bot + Bat? + Bat>

Eight parameters are to be determined, so we
need eight equations

Requiring first cubic to interpolate data at end
points of first interval gives two equations

a1 + aot] + 043?5% + 044?5:{’ = Y1,
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Example Continued

a1 + asty + azts + agts = yo

Requiring second cubic to interpolate data at
end points of second interval gives two equa-

tions
B1 + Bota + B3t5 + Bats = yo,
B1 + Botz + B3t5 + Bats = y3

Requiring first derivative of interpolant to be
continuous at to gives equation

ap + 2asts + 3aats = Bo + 283t + 36at3
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Example Continued

Requiring second derivative of interpolant func-
tion to be continuous at t» gives equation

2a3 + 6agty = 203 + 604t2

Finally, by definition natural spline has second
derivative equal to zero at endpoints, which
gives two equations

2a3 + 6agt; = 0,
203 +604t3 =0
When particular data values are substituted for

t; and y;, system of eight linear equations can
be solved for eight unknown parameters «; and

B;

45



Hermite Cubic vs Spline Interpolation

Choice between Hermite cubic and spline in-
terpolation depends on data to be fit and on
purpose for doing interpolation

If smoothness is of paramount importance, then
spline interpolation may be most appropriate

But Hermite cubic interpolant may have more
pleasing visual appearance and allows flexibility
to preserve monotonicity if original data are
monotonic

In any case, it is advisable to plot interpolant
and data to help assess how well interpolating
function captures behavior of original data
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Hermite Cubic vs Spline Interpolation

3
6 monotone
Hermite cubic
4 L
2 L
—o—o
0 | | | | |
0 2 4 6 3 10
3
6
cubic spline
4 -
2 L
—e——o0
0 | | | | |
0 2 4 6 8 10
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B-splines

B-splines form basis for family of spline func-
tions of given degree

B-splines can be defined in various ways, in-
cluding recursion, convolution, and divided dif-
ferences. Here we will define them recursively

Although in practice we use only finite set of
knots tq1,...,tn, fOor notational convenience we
will assume infinite set of knots

e Lt o<t 1 <tp <t <t < -

Additional knots can be taken as arbitrarily de-
fined points outside interval [tq, ty]

We will also use linear functions
oF () = (t =) /(i — )
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B-splines, continued

To start recursion, define B-splines of degree
O by

1 if t; <t <tjyq
O otherwise ’

BP(t) = {

and then for k£ > 0 define B-splines of degree
k by

Bf(t) = of )BTt (®) + (1 — vf 1 (D)) BI T (1)

Since BY is piecewise constant and v¥ is linear,
B} is piecewise linear

Similarly, B? is in turn piecewise quadratic, and
in general, Bf IS piecewise polynomial of degree
k
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B-splines

1.0
B9
0.5 —
| | |
O'Oti tit1 Lit2 ti+3 lita
1.0 —
Bl
0.5 — ¢
| | |
0.047 tit1 tit2 ti+3 tita
1.0 —
0.5 — B?
| | | |
O'Oti tit1 Li42 ti+3 lita
1.0 —
0.5 — /B—\
| | | |
O'Oti tit1 tit2 ti+3 lita
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B-splines, continued

Important properties of B-spline functions BY:
1. For t<t; or t>t,ip11, BF(t)=0
2. For t; <t<t;ip11, BF(t) >0
3. Forallt, ™ _ BF(t)=1

4. For k > 1, BF has k-1 continuous
derivatives

5. Set of functions {B¥_,,...,B¥ ,}is linearly
independent on interval [t1,tn] and spans
space of all splines of degree k£ having knots
b
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B-splines, continued

Properties 1 and 2 together say that B-spline
functions have |local support

Property 3 gives normalization
Property 4 says that they are indeed splines

Property 5 says that for given k these functions
form basis for set of all splines of degree k
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B-splines, continued

If we use B-spline basis, linear system to be
solved for spline coefficients will be nonsingular
and banded

Use of B-spline basis vields efficient and sta-
ble methods for determining and evaluating
spline interpolants, and many library routines
for spline interpolation are based on this ap-
proach

B-splines are also useful in many other con-
texts, such as numerical solution of differential
equations, as we will see later
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